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Abstract: Global energy consumption and costs have increased exponentially in recent years, acceler-
ating the search for viable, profitable, and sustainable alternatives. Renewable energy is currently
one of the most suitable alternatives. The high variability of meteorological conditions (irradiance,
ambient temperature, and wind speed) requires the development of complex and accurate manage-
ment models for the optimal performance of photovoltaic systems. The simplification of photovoltaic
models can be useful in the sizing of photovoltaic systems, but not for their management in real
time. To solve this problem, we developed the I-Solar model, which considers all the elements that
comprise the photovoltaic system, the meteorologic conditions, and the energy demand. We have
validated it on a solar pumping system, but it can be applied to any other system. The I-Solar model
was compared with a simplified model and a machine learning model calibrated in a high-power
and complex photovoltaic pumping system located in Albacete, Spain. The results show that the
I-Solar model estimates the generated power with a relative error of 7.5%, while the relative error of
machine learning models was 5.8%. However, models based on machine learning are specific to the
system evaluated, while the I-Solar model can be applied to any system.

Keywords: photovoltaic energy; irrigation; solar pumping; real-time management

1. Introduction

One of the biggest threats facing the world population is climate change, which is
primarily caused by the emission of greenhouse gases (GHG) produced by the use of fossil
fuels in industrial processes. The benefits of renewable energy (REn) are clearly visible,
being a prerequisite to reach socioeconomically sustainable systems, and particularly to
address the challenges of climate change and the depletion of fossil fuels. These problems
require active policies aiming at a rapid transition [1,2]. Thus, REn is presented as a viable
and profitable alternative to the use of conventional sources of electricity [3].

Among the different sources of renewable energy, photovoltaic solar energy is in
a period of high growth globally [4]. The most important factor for the establishment
of this type of system is the cost [5,6]. However, the price of all components included
in a photovoltaic installation has drastically decreased in recent years [7], with a drop
of up to 85% in the cost of photovoltaic modules [8]. The improvement of photovoltaic
modules and the search for highly efficient new materials [9] or module types [10] has
led to an expansion, with high levels of investment in photovoltaic solar energy as an
alternative to conventional energy sources. Some studies analyzed the competition for land
between photovoltaic energy producers and farmers, which can be balanced in what is
called agrivoltaics [11]. Although agrivoltaics can open up an additional revenue stream,
there is a high concern by farmers about land affection on the long term.

The energy consumption in irrigation agriculture has exponentially increased in recent
years due to the modernisation of irrigation systems, from surface irrigation to pressurised
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irrigation [12,13]. It is necessary to find more efficient alternatives [14], mainly in areas
with high energy demand, such as irrigable areas with underground water resources,
where the extraction cost can reach up to 70% of the total energy cost of irrigation [15].
One of the possible alternatives to decrease the water extraction and application costs
is the integration of photovoltaic energy [3,16–18]. Photovoltaic pumping systems have
already been established in many countries including the USA [19], India [20], Turkey [21],
Spain [12,22] and Algeria [23]. However, the photovoltaic pumping systems must be
managed properly to obtain quality irrigation, even in complex irrigation systems [24].

Great advances have been made in the development of methodologies to design
photovoltaic pumping systems and other uses, such as the Photovoltaic Geographical
Information System (PVGIS, http://re.jrc.ec.europa.eu/pvgis/). However, the optimal
management of a system, once sized and installed, is a key factor in the satisfactory
performance of the system, which requires the development of real-time simulation models.
To efficiently manage photovoltaic pumping systems after installation, the following actions
need to be taken: (1) generate simulation models of irradiance (W·m−2) on inclined surfaces,
in order to estimate in an accurate manner the real-time direct, diffuse and reflected
components of the irradiance; (2) generate simulation models of photovoltaic generators
that represent accurately and in real-time the generated power (current and voltage in
direct current (DC) and alternating current (AC)); and (3) characterize the operation of
the equipment required to feed the system, such as the variable frequency drive (VFD)
and cables. A successful experience was implemented in Palestine by generating a micro-
grid solar photovoltaic systems for rural development and sustainable agriculture [25].
However, an improvement of the described results would be expected if a more accurate
solar model was utilized, as proposed in this manuscript.

In addition, in the process of sizing the photovoltaic pumping systems, the photo-
voltaic generator is frequently oversized to absorb the high uncertainty in the irradiance
data, and can be of up to 30% [26], among other factors. This is a practical measure to
ensure the adequate performance of the system, but requires proper regulation, which is
usually not well defined. In addition, it increases the complexity of the simulation owing
to the necessity of including a regulation algorithm for these cases with excess power gen-
eration due to oversizing. Although important developments in photovoltaic simulation
models have been realized, no analysis of the effects of the oversizing of the photovoltaic
generator on the final operation of the system have been found. Thus, it is necessary for
methodologies to generate robust models that allow accurate simulation of the photovoltaic
power generated in real time, which is essential for adequate irrigation management.

There are many models to estimate the direct and diffuse components of global ir-
radiance [27,28] that allow these components to be obtained from daily global irradiance
values. Erbs et al. [29] developed a model to estimate the diffuse radiation fraction for
hourly, daily, and monthly average global radiation. Muneer [30] and Duffie and Beck-
man [31] established some simplifications, known internationally, considering an isotropic
distribution of diffuse irradiance. Shen et al. [32] developed, based on previous references
and some modifications, a simulation model of the solar radiation using the Simulink
module of Matlab® (Mathworks Inc., Massachusetts, USA). In addition, there are various
applications of free software such as PVGIS that offer statistical data provided by satellites
to estimate the solar radiation. The model proposed in this work for the calculation of
diffuse irradiance [33] is one of the most used models to estimate the diffuse irradiance
on an inclined surface [34], offering accurate results [35]. Thus, it is necessary to develop
simulation models that work with irradiance values (W·m−2), which ensure adequate
management in real-time once the system has been sized.

There are many models to estimate the generated power in photovoltaic modules.
These include: (1) based on the calculation of the fill factor [36]; (2) by determining the short
circuit current and open circuit voltage variation at a certain temperature of operation [37];
(3) determining the current and voltage at the maximum power point (MPP) [38]; (4) a
simulation procedure for the prediction of monthly energy provided by photovoltaic
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systems based on daily profiles of irradiance and temperature [39]; (5) methods to increase
the output efficiency of a photovoltaic system based on finding the maximum power point
(MPP) [40], similar to the procedure used to estimate the photovoltaic power [22,41,42].
However, simplified models [43] can lead to overestimations in the power available at the
output of the photovoltaic generator.

The simpler simulation models tend to ignore or simplify important parameters in
the simulation of photovoltaic generators such as resistive parameters and ideality factors,
among others. These parameters are not provided by the manufacturer. However, a method
to determine the ideality factor of a real solar cell through the Lambert W function has
been described [44]. In addition, a model for obtaining the parallel resistance of a solar cell
has been developed [45,46]. Even so, no model has been found that integrates all these
contributions to improving the simulation of the photovoltaic systems, which is one of the
main contributions of this work.

Automatic learning techniques have been applied to perform regression analysis of
highly non-linear problems between the input and output datasets [47]. As an alternative
to the parametric models, such as those described above, there is an increasing trend for
the use of non-parametric algorithms, mainly based on automatic learning techniques,
both for simulation [48] and for prediction [49] of photovoltaic production. The capacity
for low-cost monitoring of photovoltaic production systems allows us to obtain a massive
quantity of information that is not always used effectively, affording machine learning
an opportunity for the treatment and extraction of useful information. Thus, machine
learning models can be created to estimate the generated power in real time from simple
measured variables, such as irradiance on the horizontal surface, and some meteorological
parameters. The main disadvantage of this methodology is that the generated model is
specific to the system that has been calibrated and validated, so it is necessary to calibrate
and validate a model for each case.

The objective of this work was to develop a photovoltaic simulation model, called
I-Solar, which allows us to obtain accurate generated powers in real time even in over-
sized systems. The model considers the integration and calculation of irradiance on an
inclined surface from irradiance on a horizontal surface and an accurate simulation of
the photovoltaic generator by the integration of different models already developed and
validated. This manuscript highlights the importance of the proper simulation of the VFD,
the efficiency of which is usually overestimated, as well as integrating the simulation of the
rest of the system elements. Also, the possibility of simulating different control algorithms
contributes in the decision making process about the adequate control of the PV system
and its components (primarily the VFD). No references have been found that addressed all
these issues in the same model. I-Solar is a model that can be applied to any PV system at
any scale, allowing a more accurate estimation of the PV generation.

This parametric model has been compared with one of the simplified models used as
well as nonparametric models generated based on machine learning (AI-Solar model). The
methodology and proposed models were calibrated and validated in a high-power and
complex photovoltaic pumping system for irrigation in Albacete, Spain.

2. Materials and Methods
2.1. The Case Study

To analyze, calibrate, and validate the developed models in the present work, they
were applied to an irrigated farm named “Peruelos”. It is located in the southeast of
Albacete, Spain (latitude 38.994◦, longitude 1.859◦). The irrigated area was approximately
90 ha, and contains almond trees growing in a 7 × 7 m2 spacing. The irrigation system
in the plot was subsurface drip irrigation energized by a photovoltaic system. The irriga-
tion system had 20 sectors with a highly irregular shape and topography, with elevation
differences of up to 60 m.

Energy was provided by a photovoltaic generator, which was composed of 152 poly-
crystalline silicon photovoltaic modules with 60 solar cells in each module (Table 1). The
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photovoltaic module model was SM6610P 265 (Astronergy/Chint Solar, Frankfurt, Ger-
many). The layout comprised eight lines in parallel with 19 photovoltaic modules per line.
The total installed power was 40 kWp, with a unit capacity per photovoltaic module of
265 Wp. It had a VFD with a nominal power of 30 kW. The photovoltaic modules were
oriented to the south with a slope of 8.5◦. The variable frequency drive (VFD) installed was
3G3RX-A4220-E1F (Omron Europe B.V., Hoofddorp, Netherlands), with an output nominal
current of 57 A and an overvoltage protection of 800 V. The VFD efficiency, according to
the manufacturer, was 89.7% at 25% load and 95% at 100% load.

Table 1. Technical characteristics of the photovoltaic modules.

Technical Characteristics Value Unit

Maximum Power in STC 265 Wp
Voltage at point of maximum power (Vmpp) in STC 31.16 V
Current at point of maximum power (lmpp) in STC 8.57 A

Open circuit voltage (Voc) in STC 38.12 V
Short circuit current (Isc) in STC 9.01 A

Efficiency 16.2 %
Power temperature coefficient −0.42 %/K

Current temperature coefficient 0.059 %/K
Voltage temperature coefficient −0.32 %/K

Nominal Operating Cell Temperature (NOCT) 46 ± 2 ◦C
Cell type polycrystalline silicon

Number of cells 60

STC: Standard Test Condition (Irradiance of 1000 W·m−2, Cell temperature of 25 ◦C, AM 1.5 Spectrum); NOCT:
Nominal Operating Cell Temperature (Irradiance of 800 W·m−2, Ambient temperature of 20 ◦C, Wind speed
of 1 ms−1).

Four cable runs were distinguished (Table 2): (1) DC cable that connects all photo-
voltaic modules; (2) DC cable from the photovoltaic generator to the VFD; (3) AC cable from
VFD to the borehole inlet; and (4) AC cable from the borehole inlet to the submersible motor.

Table 2. Lines of cables.

Line Total Length (m) Section (mm2) Material

(1) Photovoltaic
Generator (PG) 252.5 4 Cu

(2) PG-variable
frequency drive
(VFD)

10 25 Cu

(3) VFD–Borehole
inlet (BI) 470 150 Al

(4) BI-submersible
motor 225 25 Cu

Cu: copper; Al: aluminium.

2.2. Equipment and Systems for Data Acquisition: Monitoring

To simulate the power generated by the photovoltaic generator, the irradiance values
on the horizontal surface were measured with a Middleton EP07/134 calibrated pyranome-
ter (Middleton Solar, Melbourne, Australia), while temperature (◦C), wind speed (m·s−1),
atmospheric pressure (hPa), and precipitation (mm) were measured with an agro-climatic
station SICO WS-600 (SICO Control Systems, Madrid, Spain). These instruments were
located next to the photovoltaic generator (Figure 1a). The generated DC power was
measured using an electrical network analyser PEL 103 (Chauvin Arnoux, Paris, France),
while the generated AC power was measured using an AR5 electrical network analyser
(CIRCUTOR, Barcelona, Spain) (Figure 1b). Both analysers had an accuracy of better than
1.5%. With this information, the efficiency of VFD can be obtained for any generated
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power [50]. The equipment used for system monitoring was programmed to record the
measurements every 10 min during 2016, 2017, and 2018.
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2.3. Simulation Models of Photovoltaic Power Generation

The generated model, called I-Solar, was developed in MATLAB® (Mathworks Inc.,
Natick, MA, USA), which integrates the developments of different authors and proposes
new features. The I-Solar model allows simulation of the power generation of photovoltaic
solar installations in real time, which is useful not only in photovoltaic pumping systems
but also for any application of this type of energy. The results of the I-Solar model were
compared with the results obtained from a simplified model which is commonly used. In
addition, we developed a methodology for the accurate characterization of photovoltaic
solar energy generation systems based on machine learning, called AI-Solar. The parametric
models developed (Simplified and I-Solar) require the calculation of the irradiance on an
inclined surface, while the AI-Solar model directly uses the measured irradiance on a
horizontal surface. The three approaches were compared.

2.3.1. Calculation of Irradiance on Inclined Surface

The components of irradiance on an inclined surface were obtained from the compo-
nents of global irradiance on a horizontal surface (GHI) [34] measured with a pyranometer
in (W·m−2). The Direct Insolation Simulation Code (DISC) estimation model [51], im-
proved by [52], allows the calculation of the direct normal irradiance on the horizontal
surface (DNI). The DNI was corrected by applying the cosine of the solar zenith angle.
Subsequently, the diffuse irradiance on the horizontal surface (DHI) was obtained using
Equation (1).

GHI = DHI + DNI·cos(θz) (1)

where GHI is the global irradiance on the horizontal surface, DNI is the direct normal
irradiance on the horizontal surface, DHI is the diffuse irradiance on the horizontal surface,
and θz is the solar zenith angle.
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Obtaining the direct normal irradiance on an inclined surface (DNIT) is based on a
geometric approach, which depends on the inclination and orientation angles of the PV
generator and of the solar coordinates with Equation (2).

DNIT = DNI· cosξ

cosσz
(2)

where ξ is the incidence angle of the sun rays on the inclined surface and σz is the solar
zenith angle.

The diffuse irradiance on an inclined surface (DHIT) was obtained through the pro-
posed model by [33], while the reflected irradiance on the inclined surface (RIT) was
obtained through Equation (3).

RIT = GHI·ρ· (1−COSβ)

2
(3)

where β is the angle of the inclined surface and ρ is the albedo.
The total irradiance on an inclined surface (GIT) corresponds to the sum of direct

normal irradiance (DNIT), diffuse irradiance (DHIT), and reflected irradiance (RIT) values
as in Equation (4).

GIT = DNIT + DHIT + RIT (4)

2.3.2. Description of the Simplified Model to Determine the Generated Power

Before describing the developed model, we detail the most commonly simplified
model [43]. In this model, the short circuit current (ISC) is obtained using Equation (5).

ISC = G·
(

ISC,STC

1000

)
(5)

where G is the irradiance (W·m−2), and ISC,STC the short-circuit current in standard test
conditions (STC) (Table 1).

The cell temperature (TC, in ◦C) was estimated using Equation (6).

TC= Ta +
NOCT− 20

800
·G (6)

where Ta is the ambient temperature (◦C), NOCT is the nominal operating cell temperature
(◦C), and G is the irradiance (W·m−2).

The open-circuit voltage (VOC, in V) is calculated using Equation (7).

VOC= Voc, stc − 00023·(T C−25) (7)

VOC,STC is the open circuit voltage (V) in STC and TC is the cell temperature (◦C).
The thermal voltage (Vt, in V), exclusively dependent on cell temperature (TC, in

◦C) [53,54], and the normalised cell voltage (voc, in V), are calculated using Equations (8)
and (9):

Vt = 0025·TC + 273
300

(8)

υOC =
VOC
Vt

(9)

The ideal cell fill factor (FFO) without considering the series resistance [36] is calculated
using Equation (10).

FFO =
υOC − ln·(υOC + 0.72)

υOC + 1
(10)
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The normalised resistance (rs) is calculated using Equation (11), considering the fill
factor in standard conditions (FFSTC):

rS = 1− FFSTC
FFO

(11)

The voltage (VMAX) and current (IMAX) at the point of maximum power are obtained
through Equations (12)–(15):

a′ = υOC + 1− 2·υOC·rS (12)

b =
a′

1 + a′
(13)

VMAX = VOC·
[

1− b
υOC
· ln

(
a′
)
− rS·

(
1− a′−b

)]
(14)

IMAX = ISC·
(

1− a′−b
)

(15)

where a′ and b are coefficients to determine VMAX and IMAX.
The maximum power achieved in the photovoltaic generator (PowMAX_G) is obtained

using Equation (16).

PowMAX_G = VMAX ·IMAX ·Nmp·Ncp·Nms·Ncs (16)

where Nms is the number of modules in series, Ncs is the number of cells in series, Nmp is
the number of modules in parallel, and Ncp is the number of cells in parallel.

In the simplified model, to calculate the VFD efficiency (ηVFDSimplified), the polynomial
of the VFD efficiency function of the inlet power is used (Equation (17)).

ηVFDSimplified =
POWAC
POWDC

=
PowAC

PowAC +
(
k0 + k1·powAC + k2·pow2

AC
) (17)

where POWAC is the VFD output power in alternate current, POWDC is the VFD inlet power
in direct current, and powAC = POWAC/POWVFD, and POWVFD is the VFD nominal power.
The parameters k0, k1, and k2 are coefficients of characteristic losses for VFD that correspond
to mean values obtained by [55] from a representative sample of existing inverters in the
market. To calculate losses in the cables, the same approach as described in the I-Solar
model methodology is used.

2.3.3. Simulation Model Proposed, I-Solar

The main novelties of this proposed model are:

• Implementation of a more accurate electrical model for the performance of PV cells
and, therefore, of the modules.

• Implementation of a control algorithm that considers PV oversizing effects on the
working point of the PV generator, rather than only the performance when working
at the maximum power point.

• Determination of the cell temperature using not only the ambient temperature, but
also the wind speed, considering cooling effect by convection.

• Determination of power losses produced in cables for all calculation stages (Table 2).
• Determination of the yearly ageing of photovoltaic modules through a linear method

based on values provided by the manufacturer.
• Characterization of the VFD efficiency curve through measured real values rather than

the values provided by the manufacturer.

The parameters that characterize the photovoltaic modules to accurately simulate the
generated power are not always provided by the manufacturer [45], but are determined
by testing laboratories. In this case study, these parameters were provided by the presti-
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gious laboratories US Sandia National Laboratories and US National Renewable Energy
Laboratory (NREL) for the photovoltaic module considered (Table 3).

Table 3. Characteristics of the photovoltaic module Astronergy Solarmodule ASM6610P 265, pro-
vided by US Sandia National Laboratories and US National Renewable Energy Laboratory (NREL).

Characteristic Value Unit

Ideality Factor (a) 1.540 V
Light Generated Current (IL) 9.106 A
Dark Saturation Current (Io) 1.59 × 10−10 A

Series Resistance (RS) 0.275 Ohm
Parallel Resistance (Rsh) 409.580 Ohm

The accurate performance of the photovoltaic generator according to the variability of
the environmental conditions [56] has been described in Equation (18) because the STC can
rarely be found in real-life situations [57,58].

I = IL − IO

[
e

V+IRS
a − 1

]
− V + IRS

Rsh
(18)

where IL is the light generated current, IO is the dark saturation current, RS is the series
resistance, Rsh is the parallel resistance and “a” is the ideality factor.

The cell temperature was estimated in I-Solar using the method developed in [59], as
described in Equation (19).

Tc= Tm +
E
Eo
∗ ∆T (19)

where Tc is the cell temperature (◦C), Tm is the photovoltaic module temperature (◦C),
E is the incident solar irradiance on the photovoltaic module surface (W·m−2), Eo is
the reference solar irradiance in the photovoltaic module (1000 W·m−2), and ∆T is the
temperature difference between the cell and the back surface of the photovoltaic module.

The general estimation of power losses in cables in DC is based on the voltage drop
approach as in Equation (20).

VD =
2·L·I· cos ϕ

σ·s (20)

where VD is the voltage drop (V), L is the length of cable (m), I is the current in cable (A), σ
is the conductivity of the material (m·Ω−1·mm−2), s is the cross-section area of the cable
(mm2), and cosϕ = 1 in DC.

However, for AC cables, with a large length in this case, the power loss estimation
is based on the cable resistance approach obtained according to the cable temperature
reached (Equation (21)).

CLPOW =
N· R·L·I2

max
1000

(21)

where CLPOW is the power losses in the cable (kW), Imax is the AC current in the cable (A),
N is the number of conductors, L is the length of the cable (m), and R is the resistance
according to the temperature reached (Ω).

Usually, photovoltaic generators for solar pumping are oversized to guarantee the
irrigation time, overcome highly variable irradiance, and compensate for the ageing of the
modules, among other reasons. However, this oversizing has effects in their operation,
which must be considered when simulating the system. The current photovoltaic models
obtain results while working at the nominal point of maximum power (MPPN) of the
Current-Voltage curve. However, oversizing of the photovoltaic generators causes the
generator to work out of the MPPN, depending on the characteristics of the electrical system
that limits the generator (Figure 2a,b). The actual working point (AWP) is controlled by
the VFD. In the I-Solar model, a control algorithm of the power generated that considers
generator oversizing can be used in the simulation process.
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With the I-Solar model, these aspects have been considered, suggesting a clear im-
provement over current existing models. A new approach is provided to improve the
model, which consists of obtaining a control algorithm for the generated power to deter-
mine the power that is provided by the photovoltaic generator in real operating conditions.
To do this, the algorithm distinguishes between two zones with different operating be-
haviours. The first is where the photovoltaic power obtained is higher than that of the AWP,
while the second is located between the AWP and the nominal power of VFD (POWVFD).

The control algorithm for the generated power continually checks the power generated
by the photovoltaic generator to determine the zone where the value is located, and
calculates the photovoltaic power in STC using the real irradiance at any given moment.
Subsequently, Equation (22) establishes a relationship between the STC power achieved
and the power corresponding to the study zone through use of the dimensionless coefficient
“CA” which allows readjustment of the intensity according to the corresponding voltage
value of the I-V curve defining the real maximum power achieved at each moment.

CA =
POWSTC_i
POWS_A

(22)

where POWSTC_i is the achieved power in STC according to the real irradiance at instant
“i”, and POWS_A is the maximum power achieved according to the study zone.

In the case where the power obtained during the photovoltaic simulation is not located
in the zones affected by oversizing, the algorithm does not provide any change in the initial
power calculated. Therefore, the model I-Solar is prepared to detect both conditions
automatically, with and without oversizing.

The manufacturers of photovoltaic modules guarantee a useful life of 25−30 years.
However, each year the photovoltaic modules degrade with age, affecting their global
efficiency. In this model, a polynomial function has been implemented (Equation (23)),
based on values provided by the manufacturer of % efficiency loss between the first and
final years of useful life guarantee, which allows the annual power losses in the photovoltaic
modules to be calculated. Thus, in the model I-Solar it is only necessary to select the year
of useful life of the photovoltaic modules (x) to obtain results.

Degradation = x2 + (−0.75) x + 98.75 (23)
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The efficiency of the VFD was determined under highly variable environmental
conditions (Equation (24)). With the values obtained, an adjustment with a second-degree
polynomial was carried out. This parameter, which can only be obtained by measuring the
power in DC and AC (before and after the VFD), is a key factor for the accurate simulation
of solar pumping systems.

ηVFD (%) =
POWAC
POWDC

·100 (24)

where ηVFD is the efficiency of VFD (%), POWAC is the output power of VFD in AC (kW),
and POWDC the inlet power of VFD in DC (kW).

2.3.4. Simulation Model Based on Machine Learning, AI-Solar

Different types of machine learning were evaluated using massive data captured
with the monitoring system described above. The Classification Learner application of
Matlab® (Mathworks Inc., Natick, MA, USA) as well as the NETLAB library [60] for
artificial neural networks in Matlab® were used with the aim of determining the most
appropriate algorithm. The inlet variables in the model were global irradiance on the
horizontal surface (W·m−2), ambient temperature (◦C), and wind speed (m·s−1). The
output variable was the power generated in AC (W). Table 4 shows the machine learning
evaluation. Data were split into calibration (85%) and testing data (15%). In the calibration
process, a cross-validation was performed using 5 folds. To select the best predictive model,
the model performance was evaluated using testing data.

Table 4. Machine learning algorithms evaluated.

Group Method Id.

Linear Regression
Linear Regression LR
Interactions Linear IL

Robust Linear RL

Decision Trees
Fine Tree FT

Medium Tree MT
Coarse Tree CT

Support Vector Machines

Linear SVM SVM-L
Quadratic SVM SVM-Q

Cubic SVM SVM-C
Fine Gaussian SVM SVM-FG

Medium Gaussian SVM SVM-MG
Coarse Gaussian SVM SVM-CG

Gaussian Process Regression

Rational Quadratic GPR-RQ
Squared Exponential GPR-SE

Matern 5/2 GPR-M
Exponential GPR-E

Ensemble Classifiers Boosted Trees E-BoT
Bagged Trees E-BaT

Artificial Neural Network Back Propagation ANN

2.3.5. Statistical Analysis of the Evaluated Models

To analyze the goodness of fit of the model, a statistical analysis was performed based
on the calculation of the root mean square error (RMSE), relative error (RE), and coefficient
of determination (R2). Additionally, the adjustment to the normal of the residuals and
homoscedasticity were also evaluated.

3. Results and Discussion

The results first show the statistical adjustment of the different models (simplified,
I-Solar, and AI-Solar) to the measured data. Subsequently, the main variables that affect
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the performance of the models (cell temperature, control algorithm, and VFD efficiency)
are analyzed.

3.1. Analysis of the Regression Models Based on Artificial Intelligence, AI-Solar Model

To determine the type of machine learning that represents the best operation of the
photovoltaic system, the main statistical results were obtained for each of the machine
learning types described in the methodology (Table 5).

Table 5. Main statistical results for machine learning using testing data.

Model RMSE (W) RE (%) R2

LR 1596.4 7.5 0.91
IL 1491.4 7.0 0.92
RL 1595.0 7.5 0.91
FT 1343.6 6.3 0.94
MT 1428.9 6.7 0.93
CT 1396.3 6.6 0.93

SVM-L 1602.1 7.5 0.91
SVM-Q 1346.9 6.3 0.93
SVM-C 1331.9 6.3 0.94

SVM-FG 1369.7 6.4 0.93
SVM-MG 1273.1 6.0 0.94
SVM-CG 1343.6 6.3 0.94
GPR-RQ 1245.7 5.8 0.94
GPR-SE 1268.6 6.0 0.94
GPR-M 1253.6 5.9 0.94
GPR-E 1226.7 5.8 0.95
E-BoT 1632.6 7.7 0.94
E-BaT 1331.5 6.3 0.94
ANN 1332.2 6.3 0.94

The most accurate machine learning type was a Gaussian process regression (GPR)
with exponential kernel function, with a relative error of 5.8%, a RMSE of 1226.7 W, and an
R2 of 0.95. The poor performance of the linear regression models shows the complexity and
non-linearity of the analyzed problem. The same result is observed when using a linear
kernel in the SVM algorithms. However, the remaining algorithms that use non-linear
kernels show adequate performance.

The implementation of machine learning algorithms requires the acquisition of mas-
sive data to calibrate and validate the model. Although the performance of the model
is highly accurate, the generated model is specific to the system analyzed and cannot be
applied to other photovoltaic systems.

3.2. Operation Analysis of the Developed Models

A comparison between the power values measured with the electrical network anal-
yser at output VFD (in AC) and the evaluated models is shown in Figure 3: (1) simplified
model, (2) I-Solar model, and (3) AI-Solar model. The statistical analysis is shown in Table 6.
The developed AI-Solar model was trained with GPR-Exponential (GPR-E), which results
in greater precision.
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Table 6. Statistical analysis of adjustment of the evaluated models.

Model RMSE (W) RE (%) R2

Simplified 3024.8 14.2 0.84

I-Solar 1602.8 7.5 0.91

AI-Solar 1226.7 5.8 0.95

Of the models evaluated, the model based on machine learning, AI-Solar, shows the
best adjustment. Models I-Solar and AI-Solar offer a clear improvement over the simplified
model, decreasing the relative error of 14.2% for the simplified model to 7.5% and 5.8% for
the proposed I-Solar and AI-Solar (artificial intelligence) models, respectively.

In addition, the results of the simplified model show a high spread of errors due to
the overestimation both of the output power of the photovoltaic generator in DC and of
the VFD, which was calculated based on empirical coefficients that led to the fixing of the
maximum possible power of the VFD at 30 kW.

To determine the potential sources of error in the simplified model with respect to the
parametric model I-Solar, the main variables that affect the simulation power have been
analyzed, such as cell temperature, control of the generated power, and actual performance
of the VFD.

3.3. Wind Speed Effect in Cell Temperature

The cell temperature estimated by the I-Solar model is lower (Figure 4) because it con-
siders wind speed and the resulting temperature decrease due to convection processes. It is
observed that the largest differences are obtained for medium-high cell temperature values,
with a maximum difference of up to 11 ◦C. The overestimation of the cell temperature can
lead to an underestimation of the generated power. However, it has been concluded in
Section 3.2. that the simplified model tends to overestimate the generated power, which
confirms the lack of precision that the simplified model has in global terms. If a more
accurate cell temperature was estimated by the simplified model, even higher inaccuracies
of the model would have been apparent.
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3.4. Effect of the Generated Power Control Algorithm

In common practical situations where the photovoltaic generator is oversized in the
design phase, the generated power control algorithm results in an accurate estimation of
the generated power for high irradiance values. In this case study, as an example for a
representative period in summer (June, July, and August), this difference can reach up to
6.5 kW. Figure 5 presents the statistical adjustment, and Table 7 shows the statistical analysis,
of the relationships between measured power and simulated power with the I-Solar model
just downstream of the photovoltaic generator (in DC). The results indicate that, despite the
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slight differences in RMSE and R2 values compared to Table 6 (in AC), which may be due
to the different precision of the measurement devices, there is a significant improvement in
the relative error (RE).
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Table 7. Statistical analysis of the I-Solar model in DC.

Model RMSE (W) RE (%) R2

I-Solar 1750 6.83 0.89

As can be seen in Figure 5, high power values show a non-linear behaviour that reflects
the zonal differentiation of the generated power control algorithm mentioned in the method-
ology section, which is also reflected in the measured values. The absence of their application
in scenarios of oversizing leads to unfeasible results for any photovoltaic installation.

3.5. Influence of the Variable Frequency Drive (VFD) Efficiency

One of the key issues in accurately simulating a photovoltaic system to energize a
pump using a VFD is estimating the efficiency of the VFD for any irradiance condition. In
this case study, the adjustment curve of the VFD efficiency for the I-Solar model (ηVFD I-Solar)
is shown in Figure 6 and Equation (25), using a second-degree polynomial equation
depending on the output power in the VFD (x).

ηVFD I−Solar = −0.0042·x2 + 1.0876·x + 4.4977 (25)
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measured and the VFD efficiency obtained through the general equation of the simplified method.
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This methodology has been compared with parameters supplied by the VFD manu-
facturer. Figure 6 shows that the measured efficiency of the VFD at 30 kW reached a value
of 90% while the value supplied by the manufacturer was close to 95%. All measured
efficiency values were much lower than the efficiency specified by the manufacturer, with
higher differences for low powers (consequently low frequencies). The large difference at
low power values is significant. For example, at 7.5 kW, the manufacturer indicated a VFD
efficiency of 89%, while the measured values only achieved a VFD efficiency of 57%. The
high temperatures reached at the VFD locations is an important factor. It is important to
consider that this equipment mainly works in the middle of the day in summer, where the
temperature values inside the VFD electrical housing can become very high, even with
adequate ventilation. The differences found indicate that it is necessary to characterize the
actual efficiency of the VFD under real working conditions. In addition, it highlights the
necessity of establishing an improved standard to determine the efficiency of these devices
in non-ideal working conditions, primarily at high temperatures.

The comparison curve between the VDF efficiency supplied by the manufacturer and
the VFD efficiency calculated for the simplified method, which was simulated using the
general equation described in Section 2.3.2, is shown in Figure 6. The simulated values are
seen to always be below the curve of the manufacturer, with an antagonistic trend with
regard to measured values, and with an approximation at low powers, around 89% at
15.65 kW, while there is a decrease in the curve at medium power values which continues
at high power values with a final efficiency of 86.5% at an output power of 30 kW. Thus,
considering simplified solutions to take into account the VFD efficiency could lead to large
inaccuracies in the final model.

4. Conclusions

This work examines fundamental issues to consider in the modelling of photovoltaic
solar energy that are useful in the process of decision making for end users of this technology.

The complexity in the development of photovoltaic system tools and models is affected
by the strong influence of the parameters involved during the process. Collecting large
amounts of real-world measured values have allowed us to describe the performance of
the photovoltaic installation, allowing the generation of an accurate and sturdy I-Solar
model that efficiently integrates all influential stages in photovoltaic production through
the application of methodologies from different studies as well as new developments in
this study. The model has been validated with measured values to manage the system in
real time.

Although solar pumping systems are discussed in this work, this model can be
integrated into any type of photovoltaic system, such as solar pumping systems or grid
connected systems, which provide high versatility and utility.

The parametric I-Solar model developed to determine the electric power generated
in photovoltaic solar systems has allowed us to obtain a similar precision (RE = 7.5%) to
the non-parametric model (RE = 5.8%) based on machine learning. The simplicity of the
parametric simplified model results in a clear lack of precision (RE = 14.2%). In addition,
parametric models are of general application for any photovoltaic solar installation, while
the non-parametric models are specific to each installation and require a large number of
values derived from the monitoring systems.

Solar radiation values, which are the base element for the calculation of the pho-
tovoltaic production, are essential to achieve good integration in the calculation of the
irradiance components that allows us to obtain the irradiance on an inclined surface in
real time.

The effect of wind speed on the cell temperature has been demonstrated. It decreases
the temperature by convection processes and consequently increases the module efficiency.
Thus, the I-Solar generated model includes this variable compared to the simplified model.

The oversizing of the photovoltaic generator contributes to an increase in the generated
power. However, it has been demonstrated that the incorporation of the generated power
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control algorithm in installations with these characteristics is essential to determine with
precision the power used in real time in order to manage the system appropriately.

The need to characterize the VFD efficiency in real time has been demonstrated
because of the significant differences between values supplied by the manufacturer and
the measured values, which affect the generated power and consequently the system
management.

The current capacity for monitoring photovoltaic systems allows us to obtain large
amounts of performance data from these systems that can be used in machine learning to
establish accurate relationships with the final generation of electric energy. Most of these
studies are focused on the prediction of photovoltaic energy generation, while the objective
of this work is to determine the power generated in real time. In addition, these models
are useful for generating alarms when the measured power is significantly different to the
power simulated by the system.

The level of precision obtained with the I-Solar model can be useful in decision-
making to determine the optimal technical and economic specifications of photovoltaic
solar installations.
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Nomenclature
a Ideality Factor (V) Nm Number of modules in series
a’ Coefficient to determinate Vmax and Imax NOCT Nominal Operating Cell Temperature
AC Alternate current POWAC VFD output power in AC (kW)
AI Artificial Intelligence POWDC VFD inlet power in DC (kW)
Al Aluminium PowMAX_G Maximum power photovoltaic generator (kW)
AWP Actual working point POWS_A Maximum power according study area (kW)

b Coefficient to determinate Vmax and Imax POWSTC_i
STC power of real irradiance in an instant “i”
(kW)

CA Dimensionless coefficient POWVFD VFD nominal power (kW)
CLPOW Power losses in cables (kW) PVGIS Photovoltaic Geographical Information System
Cu Copper R Resistance according temperature (Ω)
DC Direct current R2 Coefficient of determination

DHI Diffuse irradiance on horizontal surface
(W·m−2) RE Relative Error

DHIT Diffuse irradiance on inclined surface (W·m−2) REn Renewable energy

DISC Direct Insolation Simulation Code RIT
Reflected irradiance on inclined surface
(W·m−2) (W·m−2)

DNI Direct normal irradiance on horizontal surface
(W·m−2) RMSE Root Mean Square Error

DNIT
Direct normal irradiance on inclined surface
(W·m−2) rs Normalized resistance
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E Incident solar irradiance (W·m−2) RS Series Resistance (Ohm)
Eo Reference solar irradiance (1000 W·m−2) Rsh Parallel Resistance (Ohm)
FFO Ideal cell fill factor s Section of the cable (mm2)
FFSTC Fill factor in standard test conditions STC Standard Test Condition
G Irradiance (W·m−2) SVM Support Vector Machine
GHG Greenhouse gases Ta Ambient temperature (◦C)

GHI Global irradiance on horizontal surface
(W·m−2) TC Cell temperature (◦C)

GIT Total irradiance on inclined surface (W·m−2) Tm Photovoltaic module temperature (◦C)
GPR-E Gaussian process regression-Exponential VD Voltage drop (V)
I Current in the cable (A) ηVFDSimplified VFD efficiency in the simplified model (%)
IL Light Generated Current (A) VFD Variable frequency drive
IMAX Current at point of maximum power (A) VMAX Voltage at point of maximum power (V)
lmpp Current at point of maximum power in STC(A) Vmpp Voltage at point of maximum power in STC (V)
Imax AC current in the cable (A) Voc Open circuit voltage (V)
Io Dark Saturation Current (A) Vt Thermal voltage (V)

ISC Short circuit current (A) ∆T Difference of temperature between the cell and
the back surface of the photovoltaic module

k0, k1, k2 Coefficients of characteristic losses for VFD ηVFD Efficiency of VFD (%)
kWp Kilowatt peak θz Solar zenith angle

L Length of the cable (m) ξ
Incidence angle of the sun rays on the inclined
surface

MPPN Nominal point of maximum power (kW) σz Solar zenith angle
N Number of conductors β Angle on inclined surface
Ncp Number of cells in parallel ρ Albedo
Ncs Number of cells in series υOC Normalized cell voltage
Nmp Number of modules in parallel σ Conductivity of the material (m·Ω−1·mm−2)
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