

INTRODUCTION

Main characteristics of the Mediterranean agroecosystems:

- Water scarcity, drought periods and global warming
- Lack of tools and irrigation services for irrigation requirements
- Low price of harvests and farms profitability
- Excessive use of resources to compensate these shortages

SUPROMED project. A way to improve the environmental and economic sustainability of the Mediterranean agro-ecosystems

A. Domínguez¹; J.M. Tarjuelo¹; A. Martínez-Romero¹; J.J. Pardo¹; J. Montero¹; R. López-Urrea²; J.A. Martínez-López²; N. Sánchez-García²; A. Zidi³; R.A. Ferrer³; L. López³; E. Mino⁴; M. Oueslati⁴; N.R. Dalezios⁵; N. Dercas⁵; I. Faraslis⁵; D. Skepastianos⁶; G. Orfanidis⁶; G. Karoutsos⁶; F. Karam⁷; C. Hashem⁷; H. Hawa⁸; M.B. Nassar⁸; H. El Amami⁹; A. Zaïri⁹; Z. Nasr⁹; A. Chebil⁹; T. Hermassi⁹; R. Nsiri¹⁰; O. Kheriji¹⁰; H. Maroufi¹⁰

¹University of Castilla-La Mancha (UCLM) (Spain); ² Instituto Técnico Agronómico Provincial (ITAP) (Spain); ³ Grupo Hispatec informática empresarial S.A (HISPATEC) (Spain); ⁴ SEMIDE (SEMIDE) (France); ⁵ University of Thessaly (UTH) (Greece); ⁶ 3DSA (3DSA) (Greece); ⁷ Lebanese University, Faculty of Agronomy (ULFA) (Lebanon); ⁸ Difaf S.A.L (DIFAF) (Lebanon); ⁹ Institute National de Recherche en Génie Rural Eaux et Forêts (INRGREF) (Tunisia); ¹⁰ National Institute of Field Crops (INGC)

Decision Support System

Fig. 1. End-users platform (available in <u>www.supromed.eu</u>)

Fig. 2. Monitoring of crops and management of farms

MATERIAL AND METHODS

- Models to be integrated into the platform: MOPECO, IREY, PRESUD, DOPIR, WRF
- Demosites: Eastern Mancha (Spain), Bekaa Valley (Lebanon), Sidi Bouzid (Tunisia)
- Comparison between traditional and proposed bv SUPROMED management
- Definition of productivity, economic and environmental indicators
- Training program for promoting the use of the platform and disseminating results
- Socioeconomic analysis and proposal of management policies

ndicator	SUPROMED	Leader	Average 1	Average 2	Average 3
/ield (kg/ha)	<mark>9467</mark>	9295	8776	<mark>9564</mark>	7350
ertilization (UN/ha)	125	<mark>125</mark>	<mark>123</mark>	244	244

OBJECTIVES

SUPROMED aims to provide a holistic crop-livestock water management system resilient to climate change in the Mediterranean agro-ecosystem by the: 1) Development of an end-user Information Technology platform 2) Integration of several models and tools in the end-user's platform 3) Application and promotion of regulated deficit irrigation techniques 4) Validation of the end-user IT platform in Spain, Lebanon and Tunisia 5) Design of a set of good agricultural practices and management techniques 6) Results integration into regional, national and international policies

Fig. 3. Validation of the models in the 3 demosite areas (MOPECO; PRESUD; and agroclimatic zoning)

RESULTS

After the 2nd year of the project, the results achieved are:

Irrigation water (m ³ /ha)	1996	2921	2227	<mark>1869</mark>	2641
ETa/ETm	0,98	<mark>1,00</mark>	<mark>1,00</mark>	0,90	0,90
Total percolation (m ³ /ha)	<mark>906</mark>	1446	1043	962	1246
Irrigation water percolation (m ³ /ha)	<mark>0</mark>	194	<mark>0</mark>	<mark>0</mark>	93
Profitability (€/ha)	661,01	523,39	743,02	<mark>895,34</mark>	445,04
Irrigation water productivity (kg/m ³)	4,74	3,18	3,94	<mark>5,12</mark>	2,78
Irrigation water productivity (€/m³)	0,17	0,11	0,17	<mark>0,23</mark>	0,11
Water footprint (m ³ /kg)	<mark>906</mark>	1446	1043	962	1246

Fig. 4. Indicators comparison between traditional and proposed by SUPROMED management in a barley crop in Spain (SUPROMED shows the results for the plot managed by the research team; Leader is the reference farmer in the area and where SUPROMED plot was placed; Average are other monitored farmers in the area croping barley).

ACKNOWLEDGEMENTS

This project is co-funded under the PRIMA 2018 program section I Farming Systems. Partners wish to thank farmers, technicians and institutions collaborating in the development of the project.

- Development of the web page and the platform (Fig. 1) Monitoring of 31 farms, 14 crops and > 90 plots (Fig. 2) Validation of the models (Fig. 3)
- Better results in the SUPROMED plots (Fig. 4)
- Dissemination: >2500 web visits; promotional video; 2100 brochures; Social media (Facebook, Linkedin, Researchgate...); 17 press releases; 9 papers... Training: 15 meetings; 8 videos & guides (Fig. 5)

CONCLUSION It is possible to reach suitable yields and incomes by doing a better use of the resources and decreasing the impact on the environment.

Fig. 5. Demonstration plot, video tutorial for the use of the models, and training course