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Abstract: Downscaling techniques offer a solution to the lack of high-resolution satellite Thermal
InfraRed (TIR) data and can bridge the gap until operational TIR missions accomplishing
spatio-temporal requirements are available. These techniques are generally based on the Visible
Near InfraRed (VNIR)-TIR variable relations at a coarse spatial resolution, and the assumption
that the relationship between spectral bands is independent of the spatial resolution. In this work,
we adopted a previous downscaling method and introduced some adjustments to the original
formulation to improve the model performance. Maps of Land Surface Temperature (LST) with
10-m spatial resolution were obtained as output from the combination of MODIS/Sentinel-2 images.
An experiment was conducted in an agricultural area located in the Barrax test site, Spain (39◦03′35” N,
2◦06′ W), for the summer of 2018. Ground measurements of LST transects collocated with the MODIS
overpasses were used for a robust local validation of the downscaling approach. Data from 6 different
dates were available, covering a variety of croplands and surface conditions, with LST values ranging
300–325 K. Differences within ±4.0 K were observed between measured and modeled temperatures,
with an average estimation error of ±2.2 K and a systematic deviation of 0.2 K for the full ground
dataset. A further cross-validation of the disaggregated 10-m LST products was conducted using
an additional set of Landsat-7/ETM+ images. A similar uncertainty of ±2.0 K was obtained as
an average. These results are encouraging for the adaptation of this methodology to the tandem
Sentinel-3/Sentinel-2, and are promising since the 10-m pixel size, together with the 3–5 days revisit
frequency of Sentinel-2 satellites can fulfill the LST input requirements of the surface energy balance
methods for a variety of hydrological, climatological or agricultural applications. However, certain
limitations to capture the variability of extreme LST, or in recently sprinkler irrigated fields, claim the
necessity to explore the implementation of soil moisture or vegetation indices sensitive to soil water
content as inputs in the downscaling approach. The ground LST dataset introduced in this paper will
be of great value for further refinements and assessments.
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1. Introduction

Time series of fine spatial and temporal resolution Thermal Infrared Images (TIR) are essential in
a variety of agricultural applications, water resources management or irrigation scheduling, based
on surface energy balance modeling [1–4]. However, spatio-temporal resolution of the operational
TIR satellite sensors results are insufficient for some applications and services, including agriculture.
The importance of high-resolution TIR images is being claimed [5–9]. The limitation in the TIR domain
remains, since the revisit time for high spatial resolution TIR sensors is typically poor, while the spatial
resolution for those with a high revisit frequency is too coarse. In practice, the spatial resolution
requirements of satellite-derived surface temperature for agricultural applications are <50 m to face
certain physical limitations related to the sensor’s point spread function in TIR observations [2,10,11].
As for the temporal resolution, daily TIR observations are desired, although this requirement could be
relaxed to 3 days as a minimum threshold [7,11].

The Copernicus conceptual mission LSTM [12] could complement other planned high-resolution
TIR missions (e.g., the JPL-NASA Landsat 9-10 or the Indian-French TRISHNA mission [13]) and
fulfill the spatio-temporal requirements stated above. In the meantime, downscaling methods are
contributing to filling this gap by downscaling the TIR coarse resolution to finer resolutions [3,14–17].
Several techniques have been proposed in the literature to enhance the spatial resolution of the TIR
domain over vegetated areas by linking TIR and reflectance information in the Visible Near Infrared
(VNIR) [18–21]. These techniques are generally based on the assumption that there exists a relation
between the vegetation cover and the LST. According to these approaches, a relation between the TIR
and VNIR bands is first obtained at coarse spatial resolution, and then applied at the finer resolution of
the VNIR bands, assuming that this relation is scale invariant.

The Normalized Difference Vegetation Index (NDVI) or the Fractional Vegetation Cover (FVC)
are the most commonly used inputs in sharpening techniques, although some studies have recently
explored the possibility of implementing other combinations of reflectance values that can better
characterize the surface response [17,22,23]. There are also some efforts attempting to integrate
soil moisture delineated vegetation indices [24], and even radar-derived soil moisture [25] in the
formulations of the LST downscaling.

For years, the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced
Along-Track Scanning Radiometer (AATSR) were combined with Landsat or Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) imagery to downscale LST from 1000 m× 1000 m
to ~1 ha (10,000 m2) scale. Higher resolution VNIR sensors, such as Formosat or the Satellite pour
l´Observation de la Terre (SPOT), have been also used to improve the disaggregated LST pixel
size [10,26].

The synergistic use of Copernicus Sentinel-2 (S2) and Sentinel-3 (S3) imagery could offer the
desired solution of high spatial and temporal resolution [8,26,27]. Although no TIR information is
provided, the Sentinel-2A and -2B tandem offers a 3–5-day repeat cycle, and a 10–20 m spatial resolution
in the VNIR bands. Revisit time for S3 reduces to 1–2 days, with a spatial resolution of 1000 m for their
thermal channels. The relationship between TIR and VNIR bands could be extracted from S3 and then
applied to S2 VNIR data. Sobrino et al. [27] explored the conceptual combination of the MultiSpectral
Instrument (MSI), on board the Sentinel-2, and the Ocean and Land Color Instrument/Sea and Land
Surface Temperature Radiometer (OLCI/SLSTR), on board the Sentinel-3, to show an improvement
in LST products derived from AATSR at that time, before the Sentinel-3 data were available. High
spatial resolution data from S2 was used to improve the characterization of the sub-pixel heterogeneity
through a better parameterization of surface emissivity, although no downscaling was applied by
these authors. A machine learning algorithm was proposed by Guzinski and Nieto [8] to sharpen
low-resolution TIR observations from S3 using high-resolution VNIR S2 imagery. Huryna et al. [28]
applied the methodology introduced by Agam et al. [19] to the combination of S3–S2 imagery. However,
the methodology was tested using Terra/MODIS or Landsat observations in both works, due to the
lack of high-resolution TIR data to use for cross-validation.
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Despite the extraordinary growth of downscaling studies in the past decade, the assessment
of the thermal sharpening techniques has been traditionally conducted by cross-validation with
derived LST products at original Landsat or ASTER TIR spatial resolutions, 60–100 m and 90 m,
respectively [1,8,17,21,28]. Comprehensive ground validations of disaggregated LST are quite scarce,
due to the lack of robust datasets covering high contrast heterogeneous areas.

This paper continues the work initiated by Bisquert et al. [1]. These authors tested the application
of different downscaling techniques in an experimental site in Barrax (Albacete, Spain) from the
combination MODIS-Landsat to provide LST at fine spatial and temporal resolutions, to fulfill the
requirements in the estimation of surface energy fluxes and evapotranspiration in the agricultural areas
of semi-arid regions, where small land holdings dominate. Bisquert et al. [1] analyzed both classical
methods based on the VNIR-LST regression, as well as more advanced approaches based on Neural
Networks (NN) or Data Mining (DM). Linear, quadratic and exponential relationships, proposed in the
literature, were tested and results were compared to those obtained by applying NN and regression
trees in a DM approach using reflectance values from all the spectral bands available. These authors
observed that NN and DM, as well as the nonlinear regression tested, have the risk of overfitting, being
very sensitive to noise in the samples. They concluded that the simpler NDVI-LST linear regression
led to the better results in this case. Bisquert et al. [1] explored the technique results for the different
land covers in the Barrax area, and found the largest uncertainties for irrigated croplands, especially in
summer when cover heterogeneity and irrigation effects are stressed. As a follow-up, Bisquert et al. [26]
extracted disaggregated LST maps at a 10-m spatial resolution for the first time, using high-resolution
SPOT-5 images in the framework of the Spot-5 Take 5 project. Results shown in [26] were encouraging
for the further application of the model to operational S2 images.

In this context, the objective of this paper is to revise and adapt the downscaling technique
to the combination MODIS-S2 to derive operational LST maps with a spatial resolution of 10 m.
Some adjustments to the original formulation of the approach were introduced to reduce the model
uncertainty by adding an additional image-based parametrization of the residual as a function of the
VNIR response. Ground LST data from an experimental campaign carried out in the summer of 2018
were used for the model evaluation. The variety of croplands and the contrast in the surface conditions
during the experiment in the selected area allowed a comprehensive analysis of the performance of the
downscaling technique, not achieved before. Strengths and limitations of the models were discussed,
and also some guidelines for the optimal use of this technique with Sentinel-3 and Sentinel-2 imagery
are given.

This paper is structured as follows. Section 2 describes the study site, the field measurements and
the satellite imagery used, as well as the downscaling methodology. Results of the ground validation
and distributed assessment are shown in Section 3. Interpretation of the results and comparison with
previous studies comprise Section 4. Finally, Section 5 summarizes the main conclusions of this work.

2. Materials and Methods

2.1. Study Site and Measurements

This work was conducted in the semi-arid area of Barrax, southeast Spain (39◦03′ N, 2◦06′ W).
This is a very flat area with an average altitude of 700 m a.s.l, close to Albacete (Figure 1), traditionally
used by ESA (European Space Agency) as a test site in different international campaigns [29–31].
Irrigated and rainfed crops combine in this agroecosystem, with field size ranging from small terrains
below 1 ha to large pivots over 50 ha (Figure 1). This large variety makes Barrax a perfect target to
assess the performance of a downscaling technique and explore its strengths and weaknesses.

Ground measurements of LST (LSTg) were registered in “Las Tiesas” experimental farm during
the summer of 2018, concurrent with EOS-Terra/MODIS overpasses, and covering a total of 10 different
crops in 13 independent fields (Figure 1). The temperatures were measured using four hand-held
infrared radiometers (IRTs) Apogee MI-210. These radiometers have a broad thermal band (8–14 µm),
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with a 22◦ field of view and an accuracy of ±0.2 K, according to the manufacturer (Apogee Instruments,
Inc.). In fact, the similar Apogee SI-121 radiometers (same radiometer, but with a field of view of 18◦ and
without datalogger) were calibrated against a National Institute of Standards and Technology (NIST)
blackbody, during a comparison of TIR radiometers carried out in Miami by the Committee on Earth
Observation Satellites (CEOS), and the accuracy was established at 0.2 K [32]. Special care was taken
with the ground measurements in the sparse crops (vineyard and almond orchards), by averaging soil
and canopy component temperatures to obtain representative values of the target LST. The radiometers
were manually carried back and forth along transects on the fields pointing at nadir view, at a height of
1.5–2 m above the ground surface. Temperatures were registered at a rate of 5–10 measurements/min,
in transect distances of 30–50 m/min, and then covering several hectares with each IRT. The 10-min
averages centered at the satellite overpass time were considered. Radiometric temperatures were
corrected from atmospheric and emissivity effects [33]. Downwelling sky radiance was measured with
each radiometer and emissivity data were obtained through the Temperature-Emissivity Separation
(TES) procedure [34,35] from in situ thermal radiance measurements using a multispectral radiometer
CIMEL Electronique CE 312-2 [36].
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Figure 1. Overview of “Las Tiesas” experimental farm. Measurement sites are located over a S2 false
color composition corresponding to date 25 July 2018. Labels for the different study fields are explained
in the adjacent Table, together with indication of crop type and field size.

2.2. Satellite Images

Terra/MODIS images with near nadir observations of the study site (field of view <25◦) were
selected to minimize the bowtie effect [37]. Six different dates were used for this work (Table 1).
MODIS VNIR and TIR data were extracted from the MOD09GQ, and MOD11_L2 products, respectively,
downloaded from the NASA Earthdata Search tool. MOD09GQ offers surface Red and NIR reflectivity
values at a 250 m spatial resolution. MOD11_L2 product provides LST, atmospherically corrected with
a split-window algorithm, at a 1000 m spatial resolution [38].

Sentinel-2A and Sentinel-2B images concurrent or within ±1-day timing difference with MODIS
were used (see dates in Table 1). S2 Level-2A products were downloaded from the Copernicus Open
Access Hub, and they contain 10-m surface reflectance values. Bands 4 and 8 were used to compose the
Normalized Difference Vegetation Index (NDVI). Figure 2 shows an example of the spatial distribution
of the NDVI over the study site. Note the wide range in NDVI values available in the area during the
experiment. Plot in Figure 3 shows the NDVI values for the different crop fields in the selected dates.
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Table 1. List of satellite images used in this study, with indication of overpass time. Number of crop
fields where LSTg data were measured per date is included (N). Meteorological conditions in the area
at the overpass time are also listed: air temperature (Ta), relative humidity (Hr) and wind speed (u).
All dates correspond to the year 2018.

Terra/MODIS Sentinel-2 Landsat-7/ETM+ LSTg Data Ta Hr u

Date Time Viewing
Angle (◦) (A/B) (Path/Row)-Time (N) (◦C) (%) (ms−1)

22 June 11:14 19 A (22 June) no image 9 28.2 33.1 2.4
5 July 11:17 10 B (5 July) no image 9 23.9 37.1 3.9
9 July 11:02 0 A (10 July) (199/33)-10:32 7 30.1 33.0 1.5

16 July 11:08 12 B (15 July) (200/33)-10:38 8 24.3 37.3 6.4
23 July 11:14 24 A (23 July) no image 9 29.7 34.1 1.5
25 July 11:02 2 B (25 July) (199/33)-10:32 9 28.6 37.6 2.0
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Landsat-7/ETM+ overpasses were also available for 3 of the selected dates (9, 16 and 25 July).
Although ETM+ TIR band has a resolution of 60 m, a cubic convolution resampling to 30 m is applied
for user distribution. Thus, these images, with a 30-m spatial resolution, were used as a reference for
an extended validation of the disaggregated LST. For the VNIR bands the Landsat Surface Reflectance
(CDR) product was used, whereas the original TIR data in band 6 were corrected from atmospheric
and emissivity effects following the method proposed by Galve et al. [39].

2.3. Downscaling Approach

Bisquert et al. [1] tested different downscaling methods with pairs of Landsat/MODIS images
in this Barrax area. A modification of the sharpening method presented by Agam et al. [19] showed
the best results. This method is based on the linear relationship established between NDVI and LST
at the MODIS 1000 m resolution (NDVIMOD and LSTMOD, respectively). The approach outlined by
Bisquert et al. [1] has been revised and adapted to the combination MODIS-S2 and used in this work as
a basis to derive 10-m LST maps.

The flowchart in Figure 4 shows the main steps and calculations of this downscaling algorithm
that can be summarized as follows:

1. The aggregation of the VNIR bands was carried out by averaging the reflectance values in the
red and NIR bands of the 10-m S2 pixels, and 250-m MODIS pixels within an equivalent 1000 m
MODIS pixel;

2. NDVI values were calculated from both S2 (NDVIS2) and MODIS (NDVIMOD) VNIR data at
1000 m resolution;

3. Differences between S2 and MODIS VNIR data due to spectral resolution, atmospheric correction,
viewing angle or pixel footprint were corrected through a normalization extracted from the
1000 m NDVI, then applied to 10-m S2 NDVI (NDVIN);

4. The 1000 m coarse spatial resolution required a previous selection of “pure” pixels for the
NDVI-LST adjustment. This selection was based on a confidence value calculated from the
comparison between NDVIMOD and aggregated NDVIN. This confidence value was computed as
the ratio between the standard deviation from the 4 × 4 pixels belonging to each 1000 m pixel,
and its mean value, as suggested by [18]. Pixels with confidence values within the lowest quartile
were selected in this step;

5. A linear regression was established between NDVIMOD and LSTMOD at 1000 m, using data from
those “pure” pixels, and then applied to the NDVIN values to obtain a prime estimate of 10-m
LST (LSTprime);

6. The Bisquert et al. [1] algorithm included a residual (RLST) correction to account for the
local conditions, and to correct the possible deviations produced by the NDVI-LST equation.
This residue was calculated as the difference between the original and predicted LST at a coarse
resolution, and this residue value was then added equally to all high-resolution pixels composing
a coarse pixel. Since this residual correction leads to some boxy effect, Bisquert et al. [1] used
a Gaussian filter to smooth. This final step was revised, and a modification is introduced in
this work by adding a smoothing based on a linearization between the residual RLST and the
NDVIMOD itself from 1000 m data. This linear relationship between the residue and the NDVI
was then applied to 10-m NDVIN (Figure 4);

7. Finally, 10-m LST values were obtained by adding this residual RLST to original 10-m LSTprime

data from step 5. This new protocol to derive the residue values was expected to reduce the LST
deviation, particularly in small size fields surrounded by a different cover, and then contribute to
an overall improvement in the model performance.



Remote Sens. 2020, 12, 1453 7 of 16

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 17 

 

6. The Bisquert et al. [1] algorithm included a residual (RLST) correction to account for the local 
conditions, and to correct the possible deviations produced by the NDVI-LST equation. This 
residue was calculated as the difference between the original and predicted LST at a coarse 
resolution, and this residue value was then added equally to all high-resolution pixels 
composing a coarse pixel. Since this residual correction leads to some boxy effect, Bisquert et al. 
[1] used a Gaussian filter to smooth. This final step was revised, and a modification is introduced 
in this work by adding a smoothing based on a linearization between the residual RLST and the 
NDVIMOD itself from 1000 m data. This linear relationship between the residue and the NDVI 
was then applied to 10-m NDVIN (Figure 4);  

7. Finally, 10-m LST values were obtained by adding this residual RLST to original 10-m LSTprime 
data from step 5. This new protocol to derive the residue values was expected to reduce the LST 
deviation, particularly in small size fields surrounded by a different cover, and then contribute 
to an overall improvement in the model performance. 
This downscaling procedure was applied to pairs of MODIS-S2 images. When no Sentinel-2 

image was available concurrent with the MODIS overpass, close in time images (±1 day) were used, 
under the assumption of minimum changes in NDVI. Note the normalization procedure applied in 
step 3 reduced possible differences at this point. 

 

 

Figure 4. Flowchart of the downscaling methodology, including the different processing steps, inputs 
and outputs. Variable descriptions are included in the text. 

The assessment of the MODIS-S2 downscaling method was carried at both local and distributed 
scales, by comparison with ground measurements and Landsat-7/ETM+ LST products, respectively. 
In this last case, the comparison was established at the 30-m spatial resolution provided by U.S. 
Geological Survey (USGS). Following Gao et al. [20], the aggregation of 10-m S2 LST was done 
through the Stefan-Boltzmann law, with the assumption of similar emissivity values for adjacent 
pixels. Some differences may arise due to the 20–30 min delay in acquisition time between MODIS 
and ETM+ sensors. A normalization procedure was applied to minimize these discrepancies in LST 
values [1]. A linear regression between the aggregated Landsat and MODIS images at 1000 m was 
obtained, and then applied at 30-m spatial resolution, for each pair of MODIS-ETM+ images.  

The model performance was quantified in terms of classical statistical metrics, such as the 
determination coefficient (r2), the root mean square difference (RMSD), the systematic difference 
parameter (Bias), the mean absolute deviation (MAD), or the mean absolute deviation in percentage 

Figure 4. Flowchart of the downscaling methodology, including the different processing steps, inputs
and outputs. Variable descriptions are included in the text.

This downscaling procedure was applied to pairs of MODIS-S2 images. When no Sentinel-2
image was available concurrent with the MODIS overpass, close in time images (±1 day) were used,
under the assumption of minimum changes in NDVI. Note the normalization procedure applied in
step 3 reduced possible differences at this point.

The assessment of the MODIS-S2 downscaling method was carried at both local and distributed
scales, by comparison with ground measurements and Landsat-7/ETM+ LST products, respectively.
In this last case, the comparison was established at the 30-m spatial resolution provided by U.S.
Geological Survey (USGS). Following Gao et al. [20], the aggregation of 10-m S2 LST was done
through the Stefan-Boltzmann law, with the assumption of similar emissivity values for adjacent pixels.
Some differences may arise due to the 20–30 min delay in acquisition time between MODIS and ETM+

sensors. A normalization procedure was applied to minimize these discrepancies in LST values [1].
A linear regression between the aggregated Landsat and MODIS images at 1000 m was obtained, and
then applied at 30-m spatial resolution, for each pair of MODIS-ETM+ images.

The model performance was quantified in terms of classical statistical metrics, such as the
determination coefficient (r2), the root mean square difference (RMSD), the systematic difference
parameter (Bias), the mean absolute deviation (MAD), or the mean absolute deviation in percentage
(MADP) [40]. Following Schneider et al. [41], other statistics considered more robust and less influenced
by outliers were also calculated, such as the median bias (Me), robust standard deviation (RSD) and
robust RMSD (R-RMSD). The skewness and kurtosis were also included, which quantitatively describe
the distribution of the differences between the estimated and observed values.

3. Results

3.1. Ground Validation

The field scale assessment was performed using the ground data as a reference. IRT radiometric
temperatures were corrected from atmospheric and emissivity effects, and average values for each
10-min transect/field were calculated. A total of 51 LSTg data were available for this study (Table 1).
Measured LSTg values were in the range 297–327 K. The lowest values were observed for fully vegetated
crops (grass, potato, or maize), whereas the largest values corresponded to bare soil, soil dominated
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crops (vineyard and almond orchard) and senescence cereals. Standard deviation of LSTg data per
crop field were <±1.5 K in 90% of the dataset, with a maximum value of ±1.9 K, showing the thermal
homogeneity of the fields and the thermal stability during the 10-min interval.

The methodology described above was applied to the six pairs of MODIS-S2 images listed in
Table 1. Mean values of 5 × 5 high-resolution pixel arrays, centered in the location of the ground
transects, were calculated and plotted against LSTg (see Figure 5). Disaggregated LST values ranged
from 302 to 322 K, pointing to a certain limitation of the disaggregation technique to reproduce extreme
low and high temperatures. Values of the standard deviation for the 5 x 5 pixel averages were <± 2.0 K.

All parcels in this study were provided with sprinkler irrigation system, except the vineyard
and almond orchard, where drip irrigation was supplied. Irrigation was scheduled and frequently
applied during the study period. For a few hours after an irrigation event, a cooling effect occurs
consequence of the wetted surface. This effect is stressed when sprinklers are used. This was the case
of 20% of our dataset, with 12 ground transects collected just a few hours/minutes after irrigation
events. These points are plotted with non-filled circles in Figure 5. Note the evident overestimation of
the disaggregated LST compared to LSTg values, with differences >10 K in some cases. These results
reinforce Bisquert et al. [26] findings pointing a shortcoming of the method over wet soil areas.

Certain limitations were also observed for the highest LST values. By stablishing a threshold of
325 K, only five data were excluded corresponding to fallow and tilled barley or poppy.
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Focusing on LST data lower than 325 K, and excluding points corresponding to recently irrigated
conditions, a good agreement (r2 = 0.90) is observed between disaggregated LST10m and LSTg values
(Figure 5). Differences range between ±4.0 K, with a systematic deviation of 0.2 K and a RMSD value
of ±2.2 K (see Table 2). The kurtosis values (~−1) indicate a behavior close to the normal distribution,
while the negligible skewness observed indicates a LST-difference distribution closely centered at 0.

The plot in Figure 6 superposes results obtained running the Bisquert et al. [1] algorithm.
Good agreement is also observed by this original formulation, although some scatter is added, with an
increase in the RMSD value up to ±2.7 K in this case.

MODIS LST values are superposed to plot in Figure 6 too, showing a large scatter (RMSD=±8.0 K)
and discrepancies >10 K. This deviation is stressed for low temperatures registered in small size
vegetated parcels that are surrounded by bare soil or other croplands with higher LST. This effect was
already observed by Bisquert et al. [26].
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Table 2. Quantitative analysis of the differences between disaggregated LST or MODIS LST,
and ground-measured LST data. The statistics include: mean bias (Bias); standard deviation (SD); mean
absolute deviation (MAD); Mean Absolute Deviation in Percentage (MADP), obtained as the MAD
divided by the mean observed value; root mean square difference (RMSD); coefficient of determination
(r2); median bias (Me); robust standard deviation (RSD); robust RMSD (R−RMSD); skewness (S);
and kurtosis (K).

N = 34 Min
(K)

Max
(K)

Bias
(K)

SD
(K)

MAD
(K)

MADP
(%)

RMSD
(K) r2 Me

(K)
RSD
(K)

R-RMSD
(K) S K

LST10m −3.6 3.9 0.2 2.2 1.9 0.6 2.2 0.90 0.2 2.8 2.8 −0.04 −1.2

LST10m (Bisquert et al. [1]) −4.5 5.7 0.4 2.7 2.3 0.7 2.7 0.90 0.5 3.3 3.4 0.06 −0.8

LST_MOD −4.2 20.5 4.4 6.8 5.4 1.7 8.0 0.10 1.2 7.7 7.8 1.1 0.3

3.2. Distributed Assessment

Beyond the ground validation at a field scale, the model performance was assessed at a larger
distributed scale by using the three concurrent Landsat-7/ETM+ images as a reference. The Single-Band
Atmospheric Correction (SBAC) tool, recently introduced by Galve et al. [39], was used in this work
for the correction of the TIR data.

Prior to the downscaling assessment, the feasibility of the Landsat-derived LST data needs to be
tested. Ground data were also used to evaluate the Landsat-7/ETM+ LST estimates. The plot in Figure 7
shows the comparison between estimated and ground-measured LST values for a total of 21 data
available for the three Landsat dates/images. Differences ranged within ± 3.5 K, except four cases
corresponding to 1.1 and 1.2 sites. Note that these are small size parcels (<2 ha), for which the spatial
resolution of Landsat 7/ETM+ is not fine enough, resulting in an overestimation of the LST values in
these vegetated targets (potato and grass). Excluding these data from the analysis, a good matching
with the 1:1 line was observed, with a coefficient of determination of r2 = 0.96. An average error of
RMSD = ±1.8 K was obtained. These results are in agreement with those reported by Galve et al. [39],
using data from 2015–2016 in this same agricultural area. A RMSD value of ±1.6 K was obtained by
these authors using ground LST data measured in six of the crop fields within “Las Tiesas” experimental
farm also used in the present work.
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Note significant differences in terms of LST between MODIS and high-resolution sensors (Landsat
or ASTER) up to 2–3 ◦C have been reported, induced by difference in the retrieval algorithm,
atmospheric correction, sensor performance, acquisition time, view geometry, or spectral response
function [10,42–45]. Weng et al. [44] pointed out that comparison of thermal data from different sensors
requires some pre-processing procedure. In this work, the differences in the spectral characteristics
and overpass time (20–30 min difference) between Landsat and MODIS were minimized by applying a
normalization process to the Landsat bands [1]. The disaggregated LST10m were aggregated to the
equivalent 30 m Landsat pixels (LST30m) by a 3 × 3 pixel averaging, based on the Stefan-Boltzmann
law, following Gao et al. [20].Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 17 
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Figure 8 shows the comparison between the original 30-m LST derived from L7-ETM+, and LST
disaggregation products at 10-m spatial resolution, for a subset of 10 × 10 km2 centered in the “Las
Tiesas” experimental farm. Visual inspection points the significant improvement in the capacity to
discriminate the different field borders. Although the real potential of the downscaling approach is
revealed when focusing on parcels <5 ha, where 3 × 3 thermal pixels of L7-ETM+ can be hardly fit
in, being these areas the main responsible of the scatter (r2 = 0.82) observed in the regression plot in
Figure 9.

To quantify the performance of the downscaling approach at a full scene perspective, pixel-to-pixel
differences were calculated at the 30 m spatial resolution for the selected subset of 10× 10 km2 (Figure 9).
Statistical metrics of the differences are listed in Table 3. Considering more than 270,000 pixel/data, an
average RMSD of ±2.0 K was obtained, with a minor overestimation of 0.3 K.

Table 3. Quantitative analysis of the differences plotted in Figure 9. Statistical metrics as defined
in Table 2.

N Bias
(K) SD (K) MAD

(K)
MADP

(%)
RMSD

(K) r2 Me
(K)

RSD
(K)

R-RMSD
(K)

9 July 67826 0.7 2.5 1.9 0.6 2.6 0.55 0.5 2.8 2.8

16 July 116015 −0.4 1.4 1.2 0.4 1.4 0.63 −0.6 1.7 1.8

25 July 90804 0.9 1.8 1.5 0.5 2.0 0.75 0.8 2.2 2.3

Average 274643 0.3 1.9 1.4 0.5 2.0 0.82 0.010 2.1 2.1
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Figure 8. Disaggregated LST10m (left column), LST derived from original 30 m L7-ETM+ Thermal
InfraRed (TIR) band (center), and MOD11A1_LST product (right column). Examples corresponding to
dates 9 July 2018 (up), 16 July 2018 (middle), and 25 July 2018 (bottom).
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Figure 9. Disaggregated LST30m versus L7-ETM+ LST for the full dataset (left). Dashed line represents
the 1:1 agreement. Histograms of pixel-to-pixel differences between disaggregated LST30m products
and LST estimates from L7-ETM+ images for three concurrent MODIS and Landsat-7 overpasses (right).
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4. Discussions

Agromomy management decisions based on TIR data need confidence in LST estimates.
An absolute uncertainty <1.5 K is traditionally reported as a requirement [7,46]. The translation
of this uncertainty to ET accuracy depends on the model but ranges between 10% and 20% [47,48].
Based on this threshold, the results obtained in this work (average RMSD = ±2.2 K) are encouraging.
Additionally, the 10-m pixel size and the revisit frequency of the MODIS data, much better than the
3–5 days revisit frequency of S2A and S2B satellites, can fulfill the LST input requirements of the
surface energy balance methods for a variety of hydrological, climatological or agricultural applications.
At this point, no significant differences in the model performance were observed in connection with the
collocation delay between the MODIS overpass and the Sentinel-2 image used, i.e., ±1-day mismatch
seems not to have had an effect on the disaggregation.

With the new treatment of the residuals (RLST) introduced in this work, as part of the downscaling
scheme, an improvement around 20% was obtained in the performance of the original formulation of
the model [1] that simply included a Gaussian filter, as suggested by Anderson et al. [2].

Ground validation results are in agreement with those obtained by Bisquert et al. [26] using
MODIS-Spot 5 pairs in this case. These authors reported a bias of 0.2 K and a RMSD of ±2.4 K
based on the comparison between disaggregated 10-m LST and ground-measured LST values for
10 different dates and five different fields. Regarding the distributed assessment, our results are similar
to the RMSD value of ±2.6 K reported by Bisquert et al. [26] at a scene scale. In a first work using
MODIS-Landsat combination [1], these authors reported an average RMSD = ±2.0 K for disaggregated
60-m LST in this case.

In this context, Agam et al. [19] tested a sharpening model (TsHARP) over extensive corn/soybean
fields in central Iowa, USA. RMSD values between ±0.7 and ±1.4 ◦C were obtained by sharpening
down simulated MODIS thermal maps at 1000 m to 250 m and between ±1.8 and ±2.4 ◦C by sharpening
simulated thermal Landsat maps from 60 and 120 m to a VNIR 30 m resolution. Also using TsHARP,
Duan and Li [49] disaggregated MODIS LST from 1000 m to 90 m, with an uncertainty of ±2.7 ◦C.
Jeganathan et al. [14] tested TsHARP from MODIS over a heterogeneous agricultural landscape in India,
and found uncertainties ranging ±2–3 K, using ASTER thermal data as a reference. Eswar et al. [23]
used a thermal sharpening technique with five different indices to downscale MODIS LST from 960 m
to 120 m, and compared this with the Landsat 7 LST data at different sites in India. These authors
found that NDVI/FVC showed better result for wet areas, whereas the Normalized Difference Water
Index (NDWI) was found better for dry areas. Yang et al. [17] used the multiple linear regression
models to downscale the aggregated Landsat TIRS (360 m) image to 90 m, using a relation of LST with
multiple scale factors in an area of mixed land covers (water, vegetation, bare soil, impervious surface),
and then compared with the pure Landsat LST. The result found was satisfactory with coefficient of
determination of 0.87 and RMSD of ±1.13 K. Merlin et al. [10] used a time series of higher resolution
Formosat-2 images to test a new disaggregation procedure of kilometric thermal data over an irrigated
cropping area in northwestern Mexico during an agricultural season. RMSD values about ±3 ◦C were
obtained by these authors.

Many of these previous studies already pointed larger uncertainties in disaggregated LST over
irrigated lands [1,10,26]. This is a weekness that remains in the present work since, although
affected, VNIR reflectivity data does not fully capture the cooling effect produced in a wetted surface.
Therefore, the downscaling technique still fails at reproducing LST values for spots with an undergoing
irrigation or recently irrigated targets. In an attempt to face these limitations, some works incorporate
additional reflectance information in the regression algorithms. Gosh and Joshi [22] tested several
regression algorithms using EO1-Hyperion hyperspectral data over different land use land cover
scenes. These authors used three pairs of coincident Hyperion and Landsat 7-ETM+ images as a
reference for the assessment. Liu et al. [24] compared the performances of a thermal disaggregation
technique, based on three different indices: temperature vegetation dryness index (TVDI), NDVI and
fractional vegetation cover (FVC), over a humid agriculture region. These authors found the smallest
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RMSD using TVDI, with an improvement of 0.2 K in comparison to the results obtained using NDVI or
FVC. A similar reduction of the uncertainty in 0.2 K was obtained by Amazirh et al. [25], thanks to the
inclusion of Sentinel-1 radar data, linked to surface soil moisture, in a new formulation to improve the
LST disaggregation methodology. These authors used Sentinel-1 imagery to derive 100-m resolution
LST, and the results were compared with Landsat LST, used as a reference over two heterogeneous sites
(irrigated and rainfed). However, average RMSD values for the six dates of study resulted over ±3.0 K,
with even worse accuracy during summer. So, further efforts are still required to improve this soil
moisture integration. Further works should also explore the inclusion of additional Sentinel-2 bands in
the shortwave infrared (SWIR) in the sharpening scheme, since they might account for vegetation and
soil water content [50].

Another finding is this work is the difficulty of the downscaling approaches to reproduce
excepcionally high LST when these conditions are constrained to small parcels in the image, and there
is a lack of coarse original MODIS pixels showing this homogeneous thermal conditions. The modeled
relationship LST-VNIR reflectivities may not fully cover these conditions, leading to an underestimation
of LST.

Focusing on the combination of S3-S2 images, very few quantitative studies have been conducted.
In a first attempt, Huryna et al. [28] applied TsHARP sharpening. These authors reported LST
differences of ±1.3–1.5 K, when compared with sharpened to 60-m S3 temperature with reference
Landsat 8 temperature at 60 m, with a positive bias of 0.3–0.6 K, depending on the study site. However,
the lack of local measurements prevented these authors from conducting a ground assessment.
Further research should merge Sentinel-2 and Sentinel-3 imagery and conduct robust assessment of
the downscaling results. Collections of ground LST measurements under a variety of surface and
environmental conditions are then required, and the dataset gathered in the framework of this work is
potentially attractive for this aim.

5. Conclusions

This work adds to the previous literature dealing with thermal infrared downscaling. The 10-m
LST maps generated from the combination MODIS-S2 can contribute to fill the gap until high
spatial-temporal resolution TIR images are available. The linear relation NDVI-LST was adopted as a
basis for the downscaling approach. Results obtained encourage the parametrization of the residual
as a function of the NDVI as a key step in the algorithm (an improvement of 0.5 K was achieved).
The variety of surface conditions and the wide range of NDVI and LST values in the semi-arid area
of Barrax allowed a robust assessment of the downscaling approach. An average estimation error
of ±2.2 K in LST10m resulted from the ground validation. This evaluation was reinforced by the
pixel-to-pixel comparison of rescaled LST30m with Landsat-7/ETM+ LST estimates, showing a similar
RMSD of ±2.0 K for the distributed assessment.

Findings in this study highlight the limitations of the methodology to capture the variability of
extreme LST, and the problems in recently sprinkler irrigated fields. Results indicate the need for
caution, since disaggregated LST under these conditions may result artificially higher than expected.

Despite the weaknesses, this work gives promising insights for the adaptation of this methodology
to the tandem S3-S2 in coming works. Further research could also benefit from the ground LST dataset
introduced in this paper for a comprehensive performance assessment.

Finally, note that the benefits of this research may extend to other applications, such as monitoring
volcanic activity and wildfire, estimating evapotranspiration or assessing drought severity.
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